產(chǎn)品與解決方案/PRODUCT AND SOLUTIONS
少用電 用好電 再生電 存儲電 防爆電
解決方案
高壓諧波補償對負載諧波的影響分析與仿真
摘要:高壓靜止無功發(fā)生器(SVG)為現(xiàn)階段電力系統(tǒng)最先進的無功補償技術(shù),通過改進控制算法可實現(xiàn)諧波補償功能,。在現(xiàn)場應用過程中發(fā)現(xiàn)有些現(xiàn)場在補償諧波時,,雖然系統(tǒng)側(cè)的電流諧波和電壓諧波都在減小,但是負載側(cè)的電流諧波會明顯增加,。根據(jù)現(xiàn)場應用過程中發(fā)現(xiàn)的問題進行了分析,、建模、仿真,,為諧波補償現(xiàn)場推廣應用積累了經(jīng)驗,。
關鍵詞:諧波補償,;靜止無功發(fā)生器
1 引言
在電網(wǎng)中,大量的非線性負荷的使用,導致電網(wǎng)電能質(zhì)量問題日益突出,。如電弧爐,、中頻爐,、礦熱爐,、低壓變頻器、整流器等非線性負荷的使用,,導致電網(wǎng)出現(xiàn)閃變,、諧波、不平衡,、過壓,、欠壓等電能質(zhì)量問題。這些電能質(zhì)量問題一方面難以滿足生產(chǎn)生活中日益增多的“高”“精”“尖”設備的使用需求,,另一方面還造成電網(wǎng)輸配電設備的損耗,。其中,諧波的危害十分嚴重,,諧波使電能的生產(chǎn),、傳輸和利用的效率降低,使電氣設備過熱,、產(chǎn)生振動,、產(chǎn)生噪聲,并使設備絕緣老化,,使用壽命縮短,,甚至發(fā)生嚴重的故障或燒毀,治理諧波的需求日益增多,。
在工業(yè)現(xiàn)場,,諧波治理有多種方案,例如FC濾波,、APF有源濾波器等,。其中,APF主要以380V,、660V電壓等級為主,。在10kV、35kV電網(wǎng)系統(tǒng),,有源濾波器主要是通過級聯(lián)H橋結(jié)構(gòu)的SVG,,改進控制算法來實現(xiàn)有源濾波、無功綜合補償功能,。
靜止無功發(fā)生器(SVG)是現(xiàn)階段電力系統(tǒng)最先進的無功補償技術(shù),。它不再采用大容量的電容器、電感器來產(chǎn)生所需無功功率,,而是通過全控型電力電子器件IGBT的高頻開關特性,,實現(xiàn)對補償控制技術(shù)質(zhì)的飛躍,特別是通過改進控制算法,,可實現(xiàn)對諧波,、無功的綜合補償。
本文主要介紹SVG實現(xiàn)無功,、有源濾波的原理,,現(xiàn)場應用諧波治理效果,以及對所遇到問題的分析,、仿真,。
2 SVG補償諧波原理
2.1 SVG原理
SVG是一種沒有旋轉(zhuǎn)部件,快速,、平滑可控的動態(tài)無功功率補償裝置,。它以全控型電力電子器件IGBT為核心的無功補償系統(tǒng),將自換相橋式電路通過電抗器或者變壓器并聯(lián)到電網(wǎng)上,,適當?shù)卣{(diào)節(jié)橋式電路交流側(cè)輸出電壓的相位和幅值,,或者直接控制其交流側(cè)電流,,使該電路吸收或者發(fā)出滿足要求的無功功率,實現(xiàn)動態(tài)無功補償?shù)哪康?,如?所示,。
表1運行狀態(tài)原理
高壓鏈式SVG一次系統(tǒng)圖如圖1所示,每相有多個IGBT構(gòu)成的H橋電路串聯(lián)組成,,電網(wǎng)電壓等級越高串聯(lián)的H橋電路數(shù)量越多,,H橋電路一般采用模塊化設計。
圖1 高壓級聯(lián)式SVG系統(tǒng)圖
SVG的控制器通過光纖為各H橋電路提供控制信號,,既實現(xiàn)了高,、低電壓可靠隔離,也提高了信號傳輸?shù)目垢蓴_能力,,如圖2所示,。
圖2 SVG系統(tǒng)電氣結(jié)構(gòu)示意圖
SVG采集系統(tǒng)電壓、系統(tǒng)電流,、負載電流,,自動計算系統(tǒng)無功需求,快速,、連續(xù)地調(diào)節(jié)容性或者感性無功功率輸出,,實現(xiàn)恒考核點無功、恒考核點電壓,、恒考核點功率因數(shù)以及綜合補償?shù)瓤刂颇J?,保障電力系統(tǒng)穩(wěn)定、高效,、優(yōu)質(zhì)地運行,。
2.2諧波補償原理
采用直接電流控制的有源濾波型中壓SVG的工作原理如圖2.3所示。從圖中可以得出式(1),,即電源電流是負載電流和補償電流之相量和,。假設負載電流中含有基波正序電流(包括基波正序無功電流和基波正序有功電流)、基波負序電流和諧波電流,,如式(2)所示,。
圖3 采用直接電流控制的靜止無功發(fā)生器的工作原理
3 現(xiàn)場問題與分析
3.1 現(xiàn)場情況
現(xiàn)場為某造紙廠,部分一次圖如下圖4所示,,35kV電網(wǎng)通過兩臺主變?yōu)閺S內(nèi)10kV母線供電,,主變?yōu)橐挥靡粋洹?0kV母線上有近60條用電支路,以及兩路自發(fā)電機組,。其中用電設備有二氧化氯整流變,、氯堿整流變、低壓變頻等設備,,以5,、7次諧波為主,,其中5次諧波超標,供電公司要求限期治理,。
圖4 現(xiàn)場供電一次系統(tǒng)圖
為了治理5次電流諧波,,現(xiàn)場在10kV母線上安裝了一臺10kV5MvarSVG,5次電流諧波補償效果如下表2所示,。
表2 諧波補償效果
補償之后,各供電電源的5次諧波電流都明顯減低,,但是發(fā)現(xiàn)負載側(cè)的諧波電流在增大,,補償之前負載5次諧波電流共93A,SVG輸出5次諧波電流限值設定為96A,,補償后負載諧波電流達到了152A,。
3.2問題分析
電流諧波補償之后,系統(tǒng)側(cè)電流諧波減小,,負載的電流諧波增大,;觀察10kV母線的電壓諧波,SVG補償之后電壓諧波明顯減小,,說明沒有補償反,。
圖5 補償前(左)、后(右)10kV母線電壓諧波
分析認為補償諧波時,,系統(tǒng)電流諧波減小,、負載電流諧波增大,是由于供電系統(tǒng)容量相對用電設備的總?cè)萘科е?,供電電源的等效?nèi)阻抗不能被忽略,。負載諧波大小是由電網(wǎng)電壓V、電源阻抗Z1,、負載阻抗Z2等因數(shù)決定,。由于供電電源內(nèi)阻抗Z1的存在,電流諧波在電源內(nèi)阻抗Z1上產(chǎn)生諧波電壓,,導致A點電網(wǎng)電壓出現(xiàn)畸變,。SVG補償之后,在負載同樣的諧波電流情況下,,流到電源的諧波電流減小,,電源等效內(nèi)阻抗Z1產(chǎn)生諧波壓降減小,供電系統(tǒng)等效容量增大,。
圖6 SVG諧波補償原理圖
4 仿真
根據(jù)以上分析,,使用simulink搭建10kV電網(wǎng)SVG諧波補償仿真平臺,如下圖7所示,。
圖7 simulink10kV電網(wǎng)SVG諧波補償仿真
SVG控制器采用采用C語言編寫,,然后編譯成MEX文件,,使用simulink里的S-Function模塊調(diào)用。SVG控制器左側(cè)為電網(wǎng)電壓,、負載電流,、SVG反饋電流,以及相關的定制參數(shù)輸入,;simulink周期調(diào)用SVG諧波補償控制算法,,計算的控制信號從右側(cè)輸出到SVG主電路。
圖8 S-Function模塊設置
負載采用三相不可控整流電路,,整流電路輸入端連接三相電抗器,,整流后接阻容負載。SVG控制器設置為只補償諧波模式,,仿真開始1秒后,,SVG解除閉鎖。下面分兩種系統(tǒng)參數(shù)進行仿真,。
(1)參數(shù)1
供電系統(tǒng)和負載阻抗1:10,。仿真波形如下圖9所示,從上到下分別為系統(tǒng)電壓,、系統(tǒng)電流,、負載電流、SVG電流,。
圖9 阻抗比1:10仿真結(jié)果波形
補償前后諧波變化如下表3所示,,補償后系統(tǒng)電壓、系統(tǒng)電流的諧波明顯減小,,而負載電流諧波81.63%增加到85.09%,。
表3 阻抗1:10諧波補償前饋諧波對比
(2)參數(shù)2
供電系統(tǒng)和負載阻抗1:1。仿真波形如下圖10所示,,從上到下分別為系統(tǒng)電壓,、系統(tǒng)電流、負載電流,、SVG電流,。
圖10 阻抗比1:1仿真結(jié)果波形
補償前后諧波變化如下表4所示,補償后系統(tǒng)電壓,、系統(tǒng)電流的諧波明顯減小,,而負載電流諧波增幅更加明顯,從81.63%增大到105.31%,。
表4 阻抗1:1諧波補償前饋諧波對比
5 結(jié)束語
本文介紹了10kV級聯(lián)式SVG的無功補償和諧波補償?shù)脑?,在原有控制器的基礎上,通過改進控制算法即可實現(xiàn)諧波補償。在現(xiàn)場應該過程,,發(fā)現(xiàn)有些現(xiàn)場在補償諧波時,,雖然系統(tǒng)側(cè)的電流諧波和電壓諧波都在減小,但是負載側(cè)的電流諧波會明顯增加,。針對現(xiàn)場應用過程發(fā)現(xiàn)的這個問題,,進行了分析、建模,、仿真,。通過上述分析、仿真可以看出,,供電系統(tǒng)的容量相對用電負載的容量越小,,補償諧波時負載側(cè)的電流諧波增幅越大。另一方面,,我們在制定諧波補償裝置的容量時,不能僅根據(jù)檢測的負載電流諧波進行容量設計,,還需要考慮供電系統(tǒng)內(nèi)阻抗和負載內(nèi)阻抗的比例關系,。